A synchronous rendering of hybrid systems for designing Plant-on-a-Chip (PoC)
نویسندگان
چکیده
Hybrid systems are discrete controllers that are used for controlling a physical process (plant) exhibiting continuous dynamics. A hybrid automata (HA) is a well known and widely used formal model for the specification of such systems. While many methods exist for simulating hybrid automata, there are no known approaches for the automatic code generation from HA that are semantic preserving. If this were feasible, it would enable the design of a plant-on-a-chip (PoC) system that could be used for the emulation of the plant to validate discrete controllers. Such an approach would need to be mathematically sound and should not rely on numerical solvers. We propose a method of PoC design for plant emulation, not possible before. The approach restricts input/output (I/O) HA models using a set of criteria for well-formedness which are statically verified. Following verification, we use an abstraction based on a synchronous approach to facilitate code generation. This is feasible through a sound transformation to synchronous HA. We compare our method (the developed tool called Piha) to the widely used Simulink R © simulation framework and show that our method is superior in both execution time and code size. Our approach to the PoC problem paves the way for the emulation of physical plants in diverse domains such as robotics, automation, medical devices, and intelligent transportation systems.
منابع مشابه
Designing a hybrid quantum controller for strongly eigenstate controllable systems
In this paper, a new quantum hybrid controller for controlling the strongly eigenstate controllable systems, is designed. For this purpose, a Lyapunov control law is implemented when the target state is in reachable set of the initial state. On the other hand, if the target state is not in the reachable set of the given initial state, based on Grover algorithm, a new interface state that the t...
متن کاملDesign of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip
Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...
متن کاملDesign of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems
Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...
متن کاملReliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملInner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere
Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1510.04336 شماره
صفحات -
تاریخ انتشار 2015